Getting Google Earth through SELINUX

Either “su” and leave off the sudo or make sure you’re user account is a sudo’er


sudo chcon -t textrel_shlib_t '/opt/google-earth/librender.so'
sudo chcon -t textrel_shlib_t '/opt/google-earth/libauth.so'
sudo chcon -t textrel_shlib_t '/opt/google-earth/libminizip.so'
sudo chcon -t textrel_shlib_t '/opt/google-earth/libevll.so'
sudo chcon -t textrel_shlib_t '/opt/google-earth/libmeasure.so'
sudo chcon -t textrel_shlib_t '/opt/google-earth/liblayer.so'
sudo chcon -t textrel_shlib_t '/opt/google-earth/libflightsim.so'
sudo chcon -t textrel_shlib_t '/opt/google-earth/libnavigate.so'
sudo chcon -t textrel_shlib_t '/opt/google-earth/libgooglesearch.so'
sudo chcon -t textrel_shlib_t '/opt/google-earth/libinput_plugin.so'
sudo chcon -t textrel_shlib_t '/opt/google-earth/libgps.so'
sudo chcon -t textrel_shlib_t '/opt/google-earth/libbasicingest.so'
sudo chcon -t textrel_shlib_t '/opt/google-earth/libminizip.so'
sudo chcon -t textrel_shlib_t '/opt/google-earth/libmoduleframework.so'
sudo chcon -t textrel_shlib_t '/opt/google-earth/libgoogleearth_lib.so'
sudo chcon -t textrel_shlib_t '/opt/google-earth/libcollada.so'

Keep and eye on SELinux after to make sure any others haven’t been added.

Download the required 32 bit packages (to let you run it on a 64 bit system) use:
http://bigjim-network.be/2009/06/24/google-earth-on-fedora-11-64-bit/

R scripts

library(lattice)
library(Hmisc)
bwplot(LOS~DT|CL,act, horiz=FALSE, cex=.5,pch="|")

bwplot(LOS~DT|CL,act, horiz=FALSE, cex=.5)

panel.mean <- function(x, y, ...) {
tmp <- tapply(x, y, FUN = mean)
panel.points(tmp, seq(tmp), pch = 20, ...)
}

bpplot(LOS~DT|CL,act, horiz=FALSE, cex=.3)

bwplot(LOS~DT|CL,act, horiz=FALSE, panel=panel.bwplot, cex=1.3)

bwplot(LOS~DT|CL,act, horiz=FALSE, cex=.5,pch="|",panel.mean <- function(LOS, DT,data=act ...) {
tmp <- tapply(LOS, DT,data=act, FUN = mean)
panel.points(tmp, seq(tmp), pch = 20, ...)
})

############################################try this
a=0.002; b=31.7; c=0.51
sds=rep(c(0,3,5,10,20,50,200), each=3)
y1=c(0,0,0.16, 0, 0.33,0.5, 0.16, 0.83, 1.16, 0.67, 0.5, 1.16, 0.83,
2.33, 3.6, 5.5, 4.33, 1.16, 22, 13, 12)
lo=y1-0.1*y1
hi=y1+0.1*y1
##########################################
# Figure 1
xYplot(
Cbind(y1, lo, hi)~jitter(sds, amount=1),
method="bars",ylim=c(0,max(hi)+1),
ylab="Y", xlab="X"
)

# Figure 2
xYplot(Cbind(y1, lo, hi)~jitter(sds, amount=1),
method="bars",ylim=c(0,max(hi)+1),
ylab="Y", xlab="X",
panel=function(...){
panel.xYplot(x,y,...)
panel.number=panel.number()
panel.curve(curve(a*(x+c)/1+a*b*(x+c), from=0, type="l", lwd=2))
})

#########################################################

###################################################################################################
bwplot(LOS~DT|CL,act, horiz=FALSE,cex=0.6,pch="|",
panel=function(x,y,...)
{
panel.bwplot(x,y,horiz=FALSE,...)
#     panel.mean(y,x,col="red",...)
bwplot(DT~LOS|CL,act,horiz=TRUE,panel=panel.mean )
#    panel.mean(y, x,col="red", horiz=TRUE,...)
#	panel.points(mean(x), y, col="red", ...)
}
)
#####################################
#########################
bwplot(LOS~DT|CL,act,horiz=FALSE,cex=0.5)
################

#############
bwplot(LOS~DT|CL,act,horiz=FALSE,panel=panel.mean )
############

#####
xYplot(
LOS~DT|CL,act,
panel=function(x,y,...)
{
xYplot(x,y,...)
bwplot(LOS~DT|CL,act,horiz=FALSE,panel=panel.mean )
#panel.mean
}
)
########

#########
xYplot(LOS~DT|CL,act,horiz=FALSE,cex=0.5)
################
library(ggplot2)
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p + geom_boxplot()
str(act)
###############################
###############################

library(ggplot2)
p<-ggplot(act,aes(factor(DT),LOS))

p + geom_boxplot() + geom_hline(aes(yintercept=mean(LOS)),colour="red",linetype=2) + facet_wrap(~CL)+ geom_point(stat = "summary",colour = "red", size = I(3) ,shape = 5, fun.y = "mean", position = position_dodge(width = 0.75))+geom_line(stat = "summary",colour = "red", size = I(3) ,shape = 5, fun.y = "mean", position = position_dodge(width = 0.75))
last_plot() + theme_bw()

###################################################
###################################################
library(doBy)
summaryBy(LOS + DT  ~ CL + DT, data = act, FUN = function(x) { c(mean = mean(x), sd = sd(x), var=var(x),sum=sum(x)) } )
###############
summaryBy(LOS  ~ CL , data = act, FUN = function(x) { c(mean = mean(x), sd =sd(x), var=var(x),sum=sum(x)) } )
##############

####################################

p+geom_boxplot()+geom_line(aes(x=factor(DT),y=mean(LOS)) )
+ geom_point(stat = "summary",colour = "red", size = I(3) ,shape = 5, fun.y = "mean", position = position_dodge(width = 0.75))

#################################

library(ggplot2)
p<-ggplot(act,aes(factor(CL),LOS))
p + geom_mean()

p<-ggplot(act,aes(factor(DT),LOS))
p + geom_boxplot() +geom_hline(aes(yintercept=mean(LOS)),colour="red")+ facet_wrap(~CL)
###################################
# qplot examples -------------------------------------------------------------

qplot(diamonds$cut, diamonds$carat)
qplot(carat, price, data = diamonds)
qplot(carat, price, data = diamonds, colour=clarity)
qplot(carat, price, data = diamonds, geom=c("point", "smooth"), method=lm)

qplot(carat, data = diamonds,
  geom="histogram")
qplot(carat, data = diamonds,
  geom="histogram", binwidth = 1)
qplot(carat, data = diamonds,
  geom="histogram", binwidth = 0.1)
qplot(carat, data = diamonds,
  geom="histogram", binwidth = 0.01)

# using ggplot() -------------------------------------------------------------
d <- ggplot(diamonds, aes(x=carat, y=price))
d + geom_point()
d + geom_point(aes(colour = carat))
d + geom_point(aes(colour = carat)) + scale_colour_brewer()

ggplot(diamonds) + geom_histogram(aes(x=price))

# Separation of statistcs and geometric elements -----------------------------

p <- ggplot(diamonds, aes(x=price))

p + geom_histogram()
p + stat_bin(geom="area")
p + stat_bin(geom="point")
p + stat_bin(geom="line")

p + geom_histogram(aes(fill = clarity))
p + geom_histogram(aes(y = ..density..))

# Setting vs mapping ---------------------------------------------------------
p <- ggplot(diamonds, aes(x=carat,y=price))
# What will this do?
p + geom_point(aes(colour = "green"))
p + geom_point(colour = "green")
p + geom_point(colour = colour)
##################################

subset data

subset(dataframe, County==”CONWY”, c(N,date,hospital))

subsetting using an OR relation.

con2<-subset(ae,(AREA=="CONWY" & HEORG=="Ffestiniog_MIU" | AREA=="GWYNEDD" & HEORG=="Ffestiniog_MIU"), c(AT,AREA,DT_3,HEORG), order=c(HEORG,DT_3))

Importing data

temp <- read.table('clipboard', header=TRUE)
DataFrameName <-read.csv ("C:/filename.csv", header= TRUE)

When importing from the clipboard make sure you don't have any commas or spaces in the data or the headings as it may fail to import correctly. You'll get errors talking about too many or to few columns if you leave them in.